路贵民,男,1965年生,黑龙江绥化人。pg模拟器试玩入口官网二级教授。
主要研究方向:
熔盐化学与电化学
新能源材料设计与制备
第一性原理分子动力学模拟
主讲课程:
冶金资源与循环(博士生),固体物理(硕士生),矿产资源概论(本科生)
主要荣誉与社会兼职:
教育部新世纪优秀人才,青海省领军人才,江西省双千计划首席技术专家
中国有色金属学会熔盐化学与技术委员会副主任委员,中国无机盐协会熔盐专业委员会副主任委员,中国汽车工程学会材料分会委员
主持科研项目及成果:
主持包括国家自然科学基金重点项目2项、金面上项目6项、国家863计划项目3项、以及国家重点研发计划课题、国家973计划课题、省级重大科技专项、企业合作项目等课题20余项。发表SCI论文150余篇,获发明专利授权30余件。培养博士、硕士研究生100余名,获国家科技进步二等奖1项、省部级科技一等奖2项
近五年发表的代表性论文:
[1] Guo D, Zhao J, Liang W, et al. Molecular dynamics simulation of molten strontium chloride based on deep potential[J]. Journal of Molecular Liquids, 2022, 348: 118380.
[2] Zhao J, Liu Z, Liang W, et al. Evaluation of the local structure and electrochemical behavior in the LiCl-KCl-SmCl3 melt[J]. Journal of Molecular Liquids, 2022, 363: 119818.
[3] Feng T, Yang B, Lu G. Investigation on the local structure and properties of molten Li2CO3-K2CO3 binary salts by machine learning potentials[J]. Journal of Molecular Liquids, 2022, 356: 118979.
[4] Liang W, Lu G, Yu J. Machine Learning Accelerates Molten Salt Simulations: Thermal Conductivity of MgCl2‐NaCl Eutectic[J]. Advanced Theory and Simulations, 2022, 5(8): 2200206.
[5] Zhao J, Wang Y, Lu G. Investigation of the Redox Potential of Lithium and Its Dissolution in the LiCl-KCl Eutectic[J]. Journal of The Electrochemical Society, 2022, 169(5): 056517.
[6] Bu M, Liang W, Lu G. Molecular dynamics simulations on AlCl3-LiCl molten salt with deep learning potential[J]. Computational Materials Science, 2022, 210: 111494.
[7] Feng T, Zhao J, Liang W, et al. Molecular dynamics simulations of lanthanum chloride by deep learning potential[J]. Computational Materials Science, 2022, 210: 111014.
[8] Liang W, Lu G, Yu J. Machine-learning-driven simulations on microstructure and thermophysical properties of MgCl2-KCl eutectic[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 4034-4042.
[9] Liang W, Lu G, Yu J. Theoretical prediction on the local structure and transport properties of molten alkali chlorides by deep potentials[J]. Journal of Materials Science & Technology, 2021, 75: 78-85.
[10] Liu Z, Lu G, Yu J. Investigation on electrochemical behaviors of Ni (II) impurity in LiCl-KCl melt[J]. Separation and Purification Technology, 2021, 268: 118354.
[11] Bu M, Liang W, Lu G, et al. Local structure elucidation and properties prediction on KCl-CaCl2 molten salt: a deep potential molecular dynamics study[J]. Solar Energy Materials and Solar Cells, 2021, 232: 111346.
[12] Liu Z, Lu G, Yu J. Investigation on electrochemical behaviors of MgCl2 impurity in LiCl-KCl melt[J]. Journal of Electroanalytical Chemistry, 2021, 886: 115131.
[13] Liang W, Lu G, Yu J. Molecular dynamics simulations of molten magnesium chloride using machine‐learning‐based deep potential[J]. Advanced Theory and Simulations, 2020, 3(12): 2000180.
[14] Liang W, Wu J, Ni H, et al. First-principles molecular dynamics simulations on the local structure and thermo-kinetic properties of molten magnesium chloride[J]. Journal of Molecular Liquids, 2020, 298: 112063.
[15] Liang W, Lu G, Yu J. Composition-dependent microstructure evolution in liquid MgCl2-KCl: A first-principles molecular dynamics study[J]. Journal of Molecular Liquids, 2020, 309: 113131.
[16] Ni H, Wu J, Sun Z, et al. Insight into the viscosity enhancement ability of Ca (NO3) 2 on the binary molten nitrate salt: A molecular dynamics simulation study[J]. Chemical Engineering Journal, 2019, 377: 120029.
[17] Ni H, Wu J, Sun Z, et al. Molecular simulation of the structure and physical properties of alkali nitrate salts for thermal energy storage[J]. Renewable energy, 2019, 136: 955-967.
[18] Wu J, Ni H, Liang W, et al. Molecular dynamics simulation on local structure and thermodynamic properties of molten ternary chlorides systems for thermal energy storage[J]. Computational Materials Science, 2019, 170: 109051.
[19] Liu Z, Lu G, Yu J. Electrochemical behavior of magnesium ions in chloride melt[J]. Ionics, 2019, 25(6): 2719-2727.
[20] Wu J, Wang J, Ni H, et al. The influence of NaCl concentration on the (LiCl-KCl) eutectic system and temperature dependence of the ternary system[J]. Journal of Molecular Liquids, 2018, 253: 96-112.